test
Search publications, data, projects and authors

Thesis

English

ID: <

10670/1.2v65zu

>

Where these data come from
Optimal control problems for bioremediation of water resources

Abstract

This thesis consists of two parts. In the first part we study minimal time strategies for the treatment of pollution in large water volumes, such as lakes or natural reservoirs, using a single continuous bioreactor that operates in a quasi-steady state. The control consists of feeding the bioreactor from the resource, with clean output returning to the resource with the same flow rate. We drop the hypothesis of homogeneity of the pollutant concentration in the water resource by proposing three spatially structured models. The first model considers two zones connected to each other by diffusion and only one of them treated by the bioreactor. With the help of the Pontryagin Maximum Principle, we show that the optimal state feedback depends only on the measurements of pollution in the treated zone, with no influence of volume, diffusion parameter, or pollutant concentration in the untreated zone. We show that the effect of a recirculation pump that helps to mix the two zones is beneficial if operated at full speed. We prove that the family of minimal time functions depending on the diffusion parameter is decreasing. The second model consists of two zones connected to each other by diffusion and each of them connected to the bioreactor. This is a problem with a non convex velocity set for which it is not possible to directly prove the existence of its solutions. We overcome this difficulty and fully solve the studied problem applying Pontryagin's principle to the associated problem with relaxed controls, obtaining a feedback control that treats the most polluted zone up to the homogenization of the two concentrations. We also obtain explicit bounds on its value function via Hamilton-Jacobi-Bellman techniques. We prove that the minimal time function is nonmonotone as a function of the diffusion parameter. The third model consists of a system of two zones connected to the bioreactor in series, and a recirculation pump between them. The control set depends on the state variable; we show that this constraint is active from some time up to the final time. We show that the optimal control consists of waiting up to a time from which it is optimal the mixing at maximum speed, and then to repollute the second zone with the concentration of the first zone. This is a non intuitive result. Numerical simulations illustrate the theoretical results, and the obtained optimal strategies are tested in hydrodynamic models, showing to be good approximations of the solution of the inhomogeneous problem. The second part consists of the development and study of a stochastic model of sequencing batch reactor. We obtain the model as a limit of birth and death processes. We establish the existence and uniqueness of solutions of the controlled equation that does not satisfy the usual assumptions. We prove that with any control law the probability of extinction is positive, which is a non classical result. We study the problem of the maximization of the probability of attaining a target pollution level, with the reactor at maximum capacity, prior to extinction. This problem does not satisfy any of the usual assumptions (non Lipschitz dynamics, degenerate locally H"older diffusion parameter, restricted state space, intersecting reach and avoid sets), so the problem must be studied in two stages: first, we prove the continuity of the uncontrolled cost function for initial conditions with maximum volume, and then we develop a dynamic programming principle for a modification of the problem as an optimal control problem with final cost and without state constraint.

Your Feedback

Please give us your feedback and help us make GoTriple better.
Fill in our satisfaction questionnaire and tell us what you like about GoTriple!