test
Search publications, data, projects and authors

Abstract

This work presents some results about probabilistic and deterministic numerical methods for partial differential equations with stochastic coefficients, with applications to hydrogeology. We first consider the steady flow equation in porous media with a homogeneous lognormal permeability coefficient, including the case of a low regularity covariance function. We establish error estimates, both in strong and weak senses, of the error in the solution resulting from the truncature of the Karhunen-Loève expansion of the coefficient. Then we establish finite element error estimates, from which we deduce an extension of the existing error estimate for the stochastic collocation method along with an error estimate for a multilevel Monte-Carlo method. We finally consider the coupling of the previous flow equation with an advection-diffusion equation, in the case when the uncertainty is important and the correlation length is small. We propose the numerical analysis of a numerical method, which aims at computing the mean velocity of the expansion of a pollutant. The method consists in a Monte-Carlo method, combining a finite element method for the flow equation and an Euler scheme for the stochastic differential equation associated to the advection-diffusion equation, seen as a Fokker-Planck equation.

Your Feedback

Please give us your feedback and help us make GoTriple better.
Fill in our satisfaction questionnaire and tell us what you like about GoTriple!