test
Search publications, data, projects and authors

Free full text available

Article

English

ID: <

10670/1.dlqru6

>

Where these data come from
Development of a Fluid–Structure Coupling Validated with a Confined Fire: Application to Painted Caves

Abstract

International audience In 1994, three speleologists discovered the Chauvet–Pont d’Arc Cave, which contains singular thermal marks on walls deep in the cavity. These alterations arose from intense fires, and understanding their characteristics would help archaeologists suggest hypotheses about the function of such activities. In this context, three confined fires were conducted in a former underground quarry to reproduce thermo-alterations similar to those in the Chauvet–Pont d’Arc Cave and extract experimental data. Each fire involved approximately 135 kg of wood, which was continuously supplied by firemen for safety reasons (> 500°C) and burnt in the shape of a tepee 80 cm in diameter for 50 min. This paper presents the validation of a numerical model on this experimentation. The modelling requires coupling between the combustion and wall impact simulations. Thus, a link between the combustion code FireFOAM and the thermo-mechanical code Cast3m was created with Python scripts. The results from the simulation agree with the measurements and the observations. More specifically, the analysis is based on the temperatures, gas and particle concentrations, gas velocities, soot deposition, colour changes at the walls and areas likely to spall. These data were collected from thirty-seven measuring points covering the whole quarry. This validated tool will provide information about the features of the fires that occurred within the Chauvet–Pont d’Arc Cave.

Your Feedback

Please give us your feedback and help us make GoTriple better.
Fill in our satisfaction questionnaire and tell us what you like about GoTriple!