test
Search publications, data, projects and authors

Thesis

French

ID: <

10670/1.fpfrms

>

Where these data come from
Molecular control of growth under water deficit : kinematic analysis and regulation of expression of TIP1 aquaporins in the poplar root apex

Abstract

This study consideres the molecular control of cell expansion in poplar root apex. The study was focused on the regulation of the TIP1 aquaporins expression under two levels of water deficit. A conceptual framework combining transcript density analysis (quantitative PCR) at a high spatial resolution and a fluid mechanics formalism was established to describe the regulation of gene expression in time and space along the root apex. Two contrasting growth status were both studied: root growth rate is either restored (after three days of moderate stress, 80 mmol kg-1, 100 g L-1 polyethylene glycol PEG 3500 g mol-1) or root growth rate is reduced (after 3 days of high stress, 250 mosmol kg-1, 200 g L-1 PEG). Kinematic analysis revealed a differential sensitivity of the relative elemental growth rate (REGR) according to the stress level and to the coordinate along the apex. At the molecular level, we showed that growth reduction was associated with a shift of maximal densities of transcripts towards the first millimeters of the apex, where cell expansion was maintained. Meanwhile the induction/repression levels were never stronger than in the control condition underlying that a high transcript density does not mean a high transcriptional induction. Focused on the combination of two dynamic processes, cell expansion and gene expression, my thesis showed that the conclusions issued from the analyses of these processes are influenced by the way time, space and age are considered

Your Feedback

Please give us your feedback and help us make GoTriple better.
Fill in our satisfaction questionnaire and tell us what you like about GoTriple!