test
Search publications, data, projects and authors

Thesis

English

ID: <

10670/1.g1z0nm

>

Where these data come from
Role of the Glycogen Synthase Kinase 3 for the Retinal Development and Homeostasis

Abstract

Post-translational modifications (PTMs) allow a higher degree of regulation for the control of gene expression by generating functional diversity at the proteome level. In the central nervous system, PTMs regulate stability or activity of transcription factors allowing a rapid response to external signals and a quick adaptation to a dynamic cellular microenvironment. In this context, I focused on the ubiquitously expressed and highly conserved Glycogen Synthase Kinases 3 (GSK3s). They are at the crossroad of multifunctional signalling pathways. During mammalian brain development, GSK3 kinases control the balance between proliferation and differentiation. Deregulation of GSK3 kinases activity has also a key role in neurodegenerative diseases by causing the accumulation/aggregations of proteins causing neuronal cell death. Drugs targeting GSK3s hold a lot of promises to treat such diseases. Whether these kinases are also important during retinal development and involved in retinal diseases remains an open question. Several studies suggest the importance of regulating GSK3 function in photoreceptor under pathological conditions. Therefore, the main objective of my PhD was to investigate the role of these kinases during photoreceptor development and homeostasis. To better understand the role of these two kinases during retinal development and to highlight potential differences with the developing brain, we also investigated their function in the control of the balance between proliferation and differentiation of retinal progenitors. To achieve my work, I used conditional knockout mice for Gsk3α and Gsk3β specifically deleted either in photoreceptor precursors or in retinal progenitors during early development. The lack of GSK3 kinases in photoreceptor precursors led to impaired photoreceptor maturation and function followed by their degeneration. Transcriptomic analysis (RNAseq) 6, 10 and 14 days postnatally prior degeneration revealed several genes downregulated belonging to biological processes involved in eye development and visual functions. Among them, the expression of the transcription factor Nrl that is required for rod photoreceptor development was decreased. Astonishingly, NRL expression was highly increased at protein level. By in vitro approaches, I demonstrated that GSK3-dependent phosphorylation regulates NRL protein stability. Despite such increase, a large number of NRL target genes were downregulated leading to impaired photoreceptor maturation and function. Surprisingly, a vast majority of these downregulated genes were also target genes for CRX, another transcription factor working in synergy with NRL. This work demonstrates that PTMs of NRL play a critical role in fine tuning the expression of a subset of genes involved photoreceptor development and homeostasis. Such findings could allow the development of innovative therapeutic strategies for retinal dystrophies. The functional characterisation of GSK3 in the course of retinal development by invalidating both Gsk3α and Gsk3β in retinal progenitors early during development revealed their requirement for controlling cell cycle exit and neuronal differentiation. Indeed, the complete lack of Gsk3α and Gsk3β led to microphtalmia in adults. Interestingly, the expression of only one Gsk3 allele was enough to rescue the phenotype. However, further analysis revealed a large number of displaced ganglion cells in the inner nuclear layer. The function of these cells remains to be determined, but their timing of production corresponds to other ganglion cells. Strikingly, these displaced ganglion cells project in distinct brain regions than normal ganglion cells. Therefore, our work could provide the first step toward determining the function of the displaced ganglion cells, which appear at low number in wildtype but whose function remains to be clarified.

Your Feedback

Please give us your feedback and help us make GoTriple better.
Fill in our satisfaction questionnaire and tell us what you like about GoTriple!