test
Search publications, data, projects and authors

Thesis

English

ID: <

10670/1.geh2fe

>

Where these data come from
Currently used pesticides and their mixtures : what are the risks to non-target aquatic organisms? Laboratory and in situ approaches.

Abstract

Pesticides have enabled humankind to protect its crops from pests, intensifying thus the crop yields to sustain the growing population. However, pesticides often end up in aquatic water bodies, e.g. via field runoff, where they may harm non-target organisms. The environmental concentrations of pesticides are often considered safe for aquatic ecosystems although they might induce sublethal changes in exposed organisms. Moreover, the organisms are generally not dealing with only one pesticide issued from a nearby field but with a complex mixture of various chemical compounds, interacting amongst themselves, and creating a toxic cocktail with unknown and hardly predictable impacts. These compounds, each with different environmental fate, eventually degrade and form more or less toxic and persistent metabolites aggravating the complexity of the mixtures.This dissertation thesis summarizes the state-of-the-art in pesticide mixture toxicity research and is composed of five research articles dealing with sublethal effects of selected pesticides on non-target aquatic species. Vulnerable embryo-larval stages of two model organisms: freshwater zebrafish (Danio rerio) and euryhaline bivalve Pacific oyster (Magallana gigas) were used to assess the sublethal toxicity of especially environmental concentrations (detected in selected European water bodies) of commonly used herbicide S metolachlor with its two metabolites metolachlor oxanilic acid and metolachlor ethanesulfonic acid, insecticide imidacloprid, and fungicide propiconazole, alone and in a mixture. A complementary in situ approach was carried out to evaluate a real impact on early-life stages of the Pacific oyster in Arcachon Bay in France, a final recipient of various substances including pesticides from respective watersheds.First, zebrafish embryo-larval stages were observed to be highly sensitive to environmentally relevant concentrations of propiconazole and to a lesser extent also to imidacloprid. In contrast, S-metolachlor and its metabolites had almost no effect on their development, neurobehavioral functions, or gene expression except for altered genes implicated in the thyroid system. A mixture of these compounds exhibited a concentration addition effect on zebrafish development. These observations imply that the development of freshwater fish may be at risk with current agricultural practice.Second, a study with Pacific oyster embryos and larvae revealed very low toxicity of propiconazole and imidacloprid on their development and locomotion patterns. Few effects caused by these compounds were observed at the molecular level, as well as the effects caused by the mixture. The environmental concentration of the mixture induced developmental malformations in oyster larvae, however, those exposed in situ in Arcachon Bay did not show higher proportions of abnormal larvae suggesting that the water quality of Arcachon Bay is sufficient for oyster development. Nevertheless, oyster larvae exposed in the inner part of Arcachon Bay showed different gene expression levels than larvae from the reference site located near the ocean entrance, which may indicate consequences of a potential long term impact.These results documented that embryo-larval stages of zebrafish and Pacific oysters are relevant tools for the assessment of low concentrations of pesticides and pesticides in a mixture, and that laboratory studies complemented with field research are useful for (eco)toxicity assessment and of high ecological relevance.

Your Feedback

Please give us your feedback and help us make GoTriple better.
Fill in our satisfaction questionnaire and tell us what you like about GoTriple!