test
Search publications, data, projects and authors

Thesis

English

ID: <

10670/1.i1sozs

>

Where these data come from
Identification of Ixodes ricinus female salivary glands factors involved in Bartonella henselae transmission

Abstract

Ticks are obligate blood-feeding ectoparasites of many hosts including mammals, birds and reptiles. After mosquitoes, they are the most important vectors worldwide, and are able to transmit the highest variety of pathogens including virus, bacteria and parasites. Ixodes ricinus (Acari: Ixodidae), the most common tick species in Europe, is a three-life stage hard tick. It is frequently associated with bites in humans, and transmits several pathogens, including Tick-Borne Encephalitis, Babesia spp., Borrellia spp., Anaplasma spp., and to a lesser extent Bartonella spp. Bartonella spp. are facultative intracellular bacteria associated with a number of emerging diseases in humans and animals. It has been demonstrated that I. ricinus is a competent vector for B. henselae that causes cat scratch disease as well as being increasingly associated with a number of other syndromes, particularly ocular infections and endocarditis. Recently, emergence or re-emergence of tick-borne diseases (TBDs) is increasingly becoming a problem. Indeed, and because of the limited success and disadvantages of controlling TBDs via acaricides, new approaches are urgently needed. Therefore, vaccine strategies that target conserved components of ticks that play roles in vector infestation and vector capacity have become particularly attractive. Accordingly, the identification of suitable antigenic targets is a major challenge for the implementation of tick and TBDs control strategies. In the present work, the main objective is to elucidate molecular interactions between I. ricinus and B. henselae in order to identify some targets that may be used as vaccines against ticks and tick-borne pathogens. Two principal points are focused on: primarily, to identify I. ricinus salivary gland differentially expressed transcripts in response to B. henselae infection with next generation sequencing techniques (454 pyrosequencing and HiSeq 2000); secondly, to validate the implication of one of these transcripts in the transmission of B. henselae. For that purpose, and at first, we validated artificial membrane feeding technique for ticks infection by B. henselae and evaluated the impact of several parameters on tick feeding. Results showed that membrane feeding technique is a suitable method to infect I. ricinus with B. henselae and that the proportion and weight of engorged ticks are decreased by B. henselae infection of the blood meal. Transcriptional analysis of the tick salivary glands generated a reference databank containing 24,539 transcripts, and the comparison of B. henselae-infected and non-infected I. ricinus female salivary glands showed that 839 and 517 transcripts were significantly up- and down-regulated in response to bacteria infection, respectively. Among them, 161 transcripts corresponded to 9 groups of ticks salivary gland gene families already described, when the other ones corresponded to genes of unknown function. Silencing the most up-regulated gene IrSPI, which belongs to BPTI/Kunitz family of serine protease inhibitor, resulted in reduction of tick feeding and bacteria load in tick salivary gland. In conclusion, this work demonstrated that artificial-membrane feeding technique is a powerful tool for investigating the interactions between tick and tick-borne pathogens as B. henselae. It also increases the available genomic information for I. ricinus and the knowledge to improve our understanding of the molecular interaction between tick and tick-borne pathogens. At last, it provides a potential vaccine candidate to control tick-borne diseases. In the future, and depending of differentially expressed genes' role confirmation, more and more vaccine candidate will be provided by this work, and the strategy of controlling tick and tick-borne disease will come to a new stage

Your Feedback

Please give us your feedback and help us make GoTriple better.
Fill in our satisfaction questionnaire and tell us what you like about GoTriple!