test
Search publications, data, projects and authors

Thesis

French

ID: <

10670/1.kdy8yf

>

Where these data come from
Integration of eye-gaze based interaction in optronic systems : evaluating the context

Abstract

New versions of Safran Electronics & Defense optronic products such as infrared binoculars or firearm sights are endowed with more and more functionalities. This leads to a need in the improvement of the user interface of those systems. The integration of eye-gaze bases interaction modalities seems interesting because of the speed, the naturalness and the availability of the eye. The eye-gaze based interaction is already well developed for impaired people but is not a mature technology for healthy people yet. During active eye-based interactions, which are explicit input from the user, a problem named Midas Touch arises. It consists in the in the incapacity of the system to differentiate scene analysis and voluntary user input. This is because the eye is a sensory organ over all. To overcome this problem, several interaction modalities have been designed: Dwell Time uses for example a minimum gaze dwell duration to trigger input, but the fixation area may also be located near the item to activate (relocated Dwell Time). It is also possible to associate the eye with another input modality such as a press button to indicate the intent from the user (multimodality eye-button). Each of these modalities has pros and cons and cherry-picking the most suitable to a given situation is not trivial. Moreover, the performances of the interaction modalities seem dependent from external variables, which represents the context of an interaction modality. To integrate eye-based interaction in systems and to choose which modality to use, it is necessary to identify what are the context characteristics and how they affect the modalities. Our goal is to propose an interaction modality context model,; that is to define all the external characteristics affecting the modality performances. From a state of the art of the eye-based interaction, we propose a description of the context following four axes: the user, the task, the system and the environment. Each of these axes decomposed in characteristics whose influence is justified by previous works or theoretical reasonings. Then we studied three characteristics which appeared to us as critical for the integration in optronic products, and we compared the performances of precited modalities against these characteristics. The first one is the type of menu (linear or circular). Contrary to the mouse, the tested interaction modalities present no significative differences depending on the type of menu they are used on. The second characteristic is linked to the user task. The aim is to evaluate the adequacy of interaction modalities with one’s ability to split his/her visual attention, that is, to fixate an area while being visually focused elsewhere. This skill is necessary during target following tasks. The fixation-based modalities seemed more permissive concerning this ability. The third characteristic is about peripheral visual alert detection in order to ensure that the user can be warned at all time. Fixation based modalities seemed to less reduce the visual field than others. Despite novice user preferences for the use of multimodality, we showed that fixation-based modalities may be more adequate for use in optronic systems. The further study of other characteristics of the context will allow to highlight the modality to use for each situation.

Your Feedback

Please give us your feedback and help us make GoTriple better.
Fill in our satisfaction questionnaire and tell us what you like about GoTriple!