Search publications, data, projects and authors
Discovering multi-relational association rules from ontological knowledge bases to enrich ontologies





In the Semantic Web context, OWL ontologies represent explicit domain knowledge based on the conceptualization of domains of interest while the corresponding assertional knowledge is given by RDF data referring to them. In this thesis, based on ideas derived from ILP, we aim at discovering hidden knowledge patterns in the form of multi-relational association rules by exploiting the evidence coming from the assertional data of ontological knowledge bases. Specifically, discovered rules are coded in SWRL to be easily integrated within the ontology, thus enriching its expressive power and augmenting the assertional knowledge that can be derived. Two algorithms applied to populated ontological knowledge bases are proposed for finding rules with a high inductive power: (i) level-wise generated-and-test algorithm and (ii) evolutionary algorithm. We performed experiments on publicly available ontologies, validating the performances of our approach and comparing them with the main state-of-the-art systems. In addition, we carry out a comparison of popular asymmetric metrics, originally proposed for scoring association rules, as building blocks for a fitness function for evolutionary algorithm to select metrics that are suitable with data semantics. In order to improve the system performance, we proposed to build an algorithm to compute metrics instead of querying via SPARQL-DL.

Report a bug

Under construction

We're in Beta!

The GoTriple platform is still in Beta and we keep adding new features everyday. Check the project's website to see what's new and subscribe to our Mailing List.