test
Search publications, data, projects and authors

Thesis

French

ID: <

10670/1.pzae5i

>

Where these data come from
Prions diseases : towards the development of gene and cell therapy.

Abstract

Transmissible spongiform encephalopathies are neurodegenerative diseases characterized by a strong vacuolization, a neuronal lost and deposits of prion pathologic protein: PrPSc. This PrPSc accumulation is the result of the conformational conversion of the host encoded endogenous PrPC protein. Although the incidence of these diseases in humans remains low (about one to two cases per million inhabitants per year), these diseases remain a public health problem. Indeed, because of their long and silent incubation period, patients with prion disease may expose people through blood transfusion or organ transplantation with a risk of iatrogenic contamination. In addition, when the diagnosis occurs, brain damage is often massive, and the outcome is always fatal and rapidly occurs. Until now, there is no treatment that could be proposed to patients.The alternative developed by our laboratory for several years, is a strategy of cell therapy coupled with gene therapy. The general objective is to use pluripotent embryonic stem cells (ESC) and graft them as a “medicine” not only to orchestrate a functional recovery of the damaged zones and protect the grafted cells from prion propagation but also to deliver anti-prion molecules.For the anti-prion molecules, we have chosen dominant negative PrP mutants (PrP-DN). Our choice is based on studies showing that a lysine at codon 219 of the human PrP or an arginine at codon 171 of the ovine PrP protect against the development of a TSE. Study of these mutants in infected cells or in transgenic mice showed that the mutated PrPC were not converted into PrPSc. Moreover, they exibit a so-called "dominant negative" protective effect on the conformational conversion of their wild-type PrPC counterparts. A first approach of gene and cell therapy was initiated in the laboratory and has shown encouraging results. Indeed, the graft of murine neural stem cells (NSC) derived from murine embryonic stem cells and expressing anti-prion molecules, has allowed, for some of the mice, to an increase the incubation time of the diseaseas well as to a decrease of astrogliosis and vacuolization.In this context, the first objective of my thesis was to validate the therapeutic approach by showing that the grafted cells were able to inhibit prion replication trough the dominant negative effect of the PrP-DN. To address this point, we have chosen to use an organotypic culture model infected with murine prions (22L strain). In addition to fill the ethical requirements under the European Directive 2010/63 and the 3Rs, organotypic culture models offer the advantage to perform and repeat experiments, kinetic tests, and PrPres analysis. This model also allows to visualize the fate of the grafted cells. Finally, by choosing this strategy, it will be possible to transpose into a humanized model the work previously performed on mouse organotypic cultures.To achieve this task, it was necessary to establish an ex vivo prion model of organotypic culture brain slices, in which it was possible to perform grafts and to evaluate the inhibitory effect of PrP-DN mutants on the prion replication.In addition, as our group is included in the team "Stem cell biology and regenerative medicine" (led by Pr Jorgensen) in which several stem cells are studied (liver stem cells and mesenchymal stem cells (MSC)) and because MSC have been shown to provide protective effects when grafted in the brain of mice with neurological diseases, it was therefore relevant to evaluate the effect of MSC on prion pathology in our prion models and in particular to evaluate the impact of concomitant MSC grafts on NSC-PrP-DN.In a last step, our goal was to transpose the mouse tools (NSC from ES and expressing the PrP-DN mutants) to "human" tools by producing human NSCs derived from human ESC and expressing human PrP-DN, and to characterized the resulted cells.

Your Feedback

Please give us your feedback and help us make GoTriple better.
Fill in our satisfaction questionnaire and tell us what you like about GoTriple!