test
Search publications, data, projects and authors

Thesis

English

ID: <

10670/1.wp1j94

>

Where these data come from
Conducting polymer devices for human electrophysiological recordings

Abstract

There is a tremendous need for developing advanced materials technologies for interfacing with brain and record neural activity. Such electrophysiological recordings are necessary for diagnostic purposes and brain/machine interfaces. Among the existing technologies, organic electronic devices constitute a promising candidate because of their mechanical flexibility and biocompatibility. The use of conducting polymers, which allow both ionic and electronic transport, allows new modes for interfacing with the biological milieu. This work presents an innovative process to incorporate the conducting polymer poly(3,4-Ethylenedioxythiophene: poly(styrene sulfonate) (PEDOT:PSS) onto electrodes for applications in electroencephalography (EEG). A step beyond conducting polymer electrodes is provided by the Organic Electrochemical Transistor (OECT). The primary advantage of using active devices is the local amplification they provide. This local amplification becomes extremely important in the case of electrophysiological signals, for which the amplitude is very low. The use of the OECT for various electrophysiological measurements is presented, done for clinical purposes like ECG or EEG, for new marketing studies like EOG, and for more fundamental neurological applications, like the recording in vitro of neuronal unitary activity. Bioelectronics is an inspiring field with broad scope. This thesis deals with applications of organic electronic devices in neuroscience. Other applications in diagnostics, biosensing, or drug delivery will offer huge opportunities for food safety, pollution control or even environmental applications.

Your Feedback

Please give us your feedback and help us make GoTriple better.
Fill in our satisfaction questionnaire and tell us what you like about GoTriple!