test
Search publications, data, projects and authors

Thesis

English

ID: <

10670/1.xnlimi

>

Where these data come from
Functional characterisation of the TCTP gene : a role in regulation of organ growth

Abstract

The growth of a multicellular organism and its size determination require the tight regulation of cell proliferation, cell differentiation, cell growth and apoptosis. These processes are influenced by the nutritional state of the organism, its environmental conditions and hormonal signals. Translationally controlled tumor protein (TCTP) is an essential regulator of growth in plants and animals. In plants it controls mitotic growth, whereas in animals, it controls mitotic and post-mitotic growth. One of the important pathways involved in the control of growth in response to nutrients is the Target of Rapamycin (TOR) pathway. In Drosophila, dTCTP was proposed to act a positive regulator upstream of TOR, although this role remains a matter of debate in the animal field.During the past 3 years of my PhD. thesis, I addressed the question whether plant TCTP acts upstream of TOR to control organ growth. I studied the impact of nutrient availability and hormones on TCTP role to control growth in plants and vice versa. Finally, I examined why plant TCTP does not control post-mitotic cell expansion growth, conversely to animal TCTP using a structure-function approach.In animals, TCTP was proposed to act as a positive activator upstream of the TOR pathway. In plants, my data support a model in which AtTCTP acts independently from the plant TOR pathway, thus in contrast to what has been proposed in animals. TCTP loss of function leads to delay of embryo development and death. Nutrient supplement rescues this embryos lethality. First, I demonstrate that embryos grown on nutrients lacking sucrose or glutamine fail to develop correctly. My data demonstrate that in vitro AtTCTP is not essential to the uptake, the use of and the response to the nutrients glucose, sucrose or glutamine. Taken together, these results reevaluate the role of AtTCTP as a growth regulator controlling mitotic growth independently from the TOR pathway and likely from nutrient related signaling pathways. Interestingly, my data also show that AtTCTP controls growth independently from auxin flux or homeostasis and that auxin-induced growth can occur without TCTP. To address why plant TCTP do not control post-mitotic growth conversely to animal counterpart, I performed protein domain swaps and created chimera proteins between Arabidopsis AtTCTP and Drosophila dTCTP. The rational was to identify protein domains that differentiate plant and animal TCTPs with regard to post-mitotic growth control. Most of chimera proteins were instable and I was unable to complement tctp loss of function in Drosophila. I performed a structure based modeling to understand this phenotype and the outcome is discussed in my PhD thesis.Altogether my results improve the understanding of plant morphogenesis by reevaluating the role of the central growth regulator TCTP.

Your Feedback

Please give us your feedback and help us make GoTriple better.
Fill in our satisfaction questionnaire and tell us what you like about GoTriple!