test
Search publications, data, projects and authors

Thesis

English

ID: <

10670/1.z44opc

>

Where these data come from
Role of Scribble1 in hippocampal synaptic maturation, bidirectional plasticity and spatial memory formation in mice

Abstract

Spatial memory formation is a complex process that transforms newly-acquired information into long-lasting and solid memories. Molecularly, these phenomena rely on the expression of two opposite forms of synaptic plasticity; long-term potentiation (LTP) and long-term depression (LTD). LTP/LTD induction relies on a fine balance between Ca2+-sensitive kinases and phosphatases that activate specific pathways of either LTP or LTD, respectively. This regulation also involves downstream interactions between receptors and highly specialized scaffold proteins, at the PSD. Scribble1 (Scrib1) is a scaffold protein that belongs to the LAP (leucine-rich repeats and PDZ domains) protein family, with 16 leucine rich repeats and 4 PDZ (PSD-95/Dlg/ZO-1) domains. Here, we developed conditional knock-out mice with a complete loss of Scrib1 expression in the major neurons of the postnatal forebrain, including hippocampal excitatory neurons, using the Cre-Lox system (Scrib1f/f,CaMKII-cre). Scrib1f/f,CaMKII-cre presented altered morphology of apical dendrites but intact spine density and spine morphology in the CA1 region. Functionally, we found increased number of silent (non-functional) synapses that decreases the number of active synapses in Scrib1f/f,CaMKII-cre CA1 neurons leading to a global decrease in basal glutamatergic synaptic transmission at CA3-CA1 synapses compared to Scrib1f/f synapses. Scrib1f/f,CaMKII-cre synapses displayed enhanced LTP but were unable to express LTD or long-term depotentiation. More strikingly, LTD-inducing protocols generated LTP in Scrib1f/f,CaMKII-cre synapses. Molecularly, we revealed a direct interaction between Scrib1 and the phosphatase PP2A that signals LTD at the synapse. Moreover, we found that the absence of Scrib1 results in a reduction of synaptic PP2A levels in Scrib1f/f,CaMKII-cre mice. This probably leads to a decrease in PP2A signaling pathway activation which favors the competing pathway downstream CaMKII resulting in LTP induction instead of LTD in Scrib1f/f,CaMKII-cre mice. On the cognitive level, we found that spatial learning was slower and inflexible in Scrib1f/f,CaMKII-cre compared to Scrib1f/f mice. Short-term spatial memory was intact while long-term memory was impaired. These results argue for an important role of Scrib1 in spatial memory consolidation. We here report that Scrib1 is important for appropriate neuronal shaping and wiring of CA1 neurons as well as functional conversion of silent synapses into active ones. Importantly, it allows bidirectional synaptic plasticity through interaction with PP2A and modulates long-term spatial memory formation

Your Feedback

Please give us your feedback and help us make GoTriple better.
Fill in our satisfaction questionnaire and tell us what you like about GoTriple!