test
Search publications, data, projects and authors

Thesis

French

ID: <

10670/1.zq3jzd

>

Where these data come from
Bayesian model mergings for multivariate extremes : application to regional predetermination of floods with incomplete data

Abstract

Uni-variate extreme value theory extends to the multivariate case but the absence of a natural parametric framework for the joint distribution of extremes complexifies inferential matters. Available non parametric estimators of the dependence structure do not come with tractable uncertainty intervals for problems of dimension greater than three. However, uncertainty estimation is all the more important for applied purposes that data scarcity is a recurrent issue, particularly in the field of hydrology. The purpose of this thesis is to develop modeling tools for the dependence structure between extremes, in a Bayesian framework that allows uncertainty assessment. Chapter 2 explores the properties of the model obtained by combining existing ones, in a Bayesian Model Averaging framework. A semi-parametric Dirichlet mixture model is studied next : a new parametrization is introduced, in order to relax a moments constraint which characterizes the dependence structure. The re-parametrization significantly improves convergence and mixing properties of the reversible-jump algorithm used to sample the posterior. The last chapter is motivated by an hydrological application, which consists in estimating the dependence structure of floods recorded at four neighboring stations, in the ‘Gardons’ region, southern France, using historical data. The latter increase the sample size but most of them are censored. The lack of explicit expression for the likelihood in the Dirichlet mixture model is handled by using a data augmentation framework

Your Feedback

Please give us your feedback and help us make GoTriple better.
Fill in our satisfaction questionnaire and tell us what you like about GoTriple!