test
Search publications, data, projects and authors
Modeling optical fiber space division multiplexed quantum key distribution systems

Articles

<http://hdl.handle.net/10251/159997>
KeywordsTriple Keywords
Drama--Plot
Scenarios
Dramatic plots
Novels
Plots (Drama, novel, etc.)
Fiction--Plots
Science, Political
Government
Politics
Political science
Political theory
Administration
Commonwealth, The
Civil government
Political thought
Funds
Finance
Funding
Communication
Mass communication
Communication, Primitive
Correspondence
Letters
Electric communication
Telecommunications
Telecommunication industry
Telecommunication
Telecom

Abstract

© 2019 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited [EN] We report a model to use to evaluate the performance of multiple quantum key distribution (QKD) channel transmission using spatial division multiplexing (SDM) in multicore (MCF) and few-mode fibers (FMF). This model is then used to analyze the feasibility of QKD transmission in 7-core MCFs in two practical scenarios involving the (1) transmission of only QKD channels and (2) simultaneous transmission of QKD and classical channels. In the first case, standard homogeneous MCFs enable transmission distances per core compatible with transmission parameters (distance and net key rate) very close to those of single-core single-mode fibers. For the second case, heterogeneous MCFs must be employed to make this option feasible. European Regional Development Fund (ERDF); Galician Regional Government (project GRC2015/018 and agreement for funding AtlantTIC (Atlantic Research Center for Information and Communication Technologies)); European Research Council (ERC) (Consolidator Grant 724663); Spanish MINECO (TEC2016-80150-R project and Ramon y Cajal fellowship RYC-2014-16247 for I. Gasulla). Ureña-Gisbert, M.; Gasulla Mestre, I.; Fraile, FJ.; Capmany Francoy, J. (2019). Modeling optical fiber space division multiplexed quantum key distribution systems. Optics Express. 27(5):7047-7063. https://doi.org/10.1364/OE.27.007047 Gisin, N., Ribordy, G., Tittel, W., & Zbinden, H. (2002). Quantum cryptography. Reviews of Modern Physics, 74(1), 145-195. doi:10.1103/revmodphys.74.145 Scarani, V., Bechmann-Pasquinucci, H., Cerf, N. J., Dušek, M., Lütkenhaus, N., & Peev, M. (2009). The security of practical quantum key distribution. Reviews of Modern Physics, 81(3), 1301-1350. doi:10.1103/revmodphys.81.1301 Ekert, A., & Renner, R. (2014). The ultimate physical limits of privacy. Nature, 507(7493), 443-447. doi:10.1038/nature13132 Tomamichel, M., Lim, C. C. W., Gisin, N., & Renner, R. (2012). Tight finite-key analysis for quantum cryptography. Nature Communications, 3(1). doi:10.1038/ncomms1631 Lucamarini, M., Patel, K. A., Dynes, J. F., Fröhlich, B., Sharpe, A. W., Dixon, A. R., … Shields, A. J. (2013). Efficient decoy-state quantum key distribution with quantified security. Optics Express, 21(21), 24550. doi:10.1364/oe.21.024550 Yuan, Z. L., Kardynal, B. E., Sharpe, A. W., & Shields, A. J. (2007). High speed single photon detection in the near infrared. Applied Physics Letters, 91(4), 041114. doi:10.1063/1.2760135 Namekata, N., Adachi, S., & Inoue, S. (2010). Ultra-Low-Noise Sinusoidally Gated Avalanche Photodiode for High-Speed Single-Photon Detection at Telecommunication Wavelengths. IEEE Photonics Technology Letters, 22(8), 529-531. doi:10.1109/lpt.2010.2042054 Sasaki, M., Fujiwara, M., Ishizuka, H., Klaus, W., Wakui, K., Takeoka, M., … Zeilinger, A. (2011). Field test of quantum key distribution in the Tokyo QKD Network. Optics Express, 19(11), 10387. doi:10.1364/oe.19.010387 Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda, J., Boxleitner, W., … Dynes, J. F. (2009). The SECOQC quantum key distribution network in Vienna. New Journal of Physics, 11(7), 075001. doi:10.1088/1367-2630/11/7/075001 Chen, T.-Y., Wang, J., Liang, H., Liu, W.-Y., Liu, Y., Jiang, X., … Pan, J.-W. (2010). Metropolitan all-pass and inter-city quantum communication network. Optics Express, 18(26), 27217. doi:10.1364/oe.18.027217 Ciurana, A., Martínez-Mateo, J., Peev, M., Poppe, A., Walenta, N., Zbinden, H., & Martín, V. (2014). Quantum metropolitan optical network based on wavelength division multiplexing. Optics Express, 22(2), 1576. doi:10.1364/oe.22.001576 Fröhlich, B., Dynes, J. F., Lucamarini, M., Sharpe, A. W., Yuan, Z., & Shields, A. J. (2013). A quantum access network. Nature, 501(7465), 69-72. doi:10.1038/nature12493 Winzer, P. J., Neilson, D. T., & Chraplyvy, A. R. (2018). Fiber-optic transmission and networking: the previous 20 and the next 20 years [Invited]. Optics Express, 26(18), 24190. doi:10.1364/oe.26.024190 Shariati, B., Mastropaolo, A., Diamantopoulos, N.-P., Rivas-Moscoso, J. M., Klonidis, D., & Tomkos, I. (2018). Physical-Layer-Aware Performance Evaluation of SDM Networks Based on SMF Bundles, MCFs, and FMFs. Journal of Optical Communications and Networking, 10(9), 712. doi:10.1364/jocn.10.000712 Galve, J. M., Gasulla, I., Sales, S., & Capmany, J. (2016). Reconfigurable Radio Access Networks Using Multicore Fibers. IEEE Journal of Quantum Electronics, 52(1), 1-7. doi:10.1109/jqe.2015.2497244 Dynes, J. F., Kindness, S. J., Tam, S. W.-B., Plews, A., Sharpe, A. W., Lucamarini, M., … Shields, A. J. (2016). Quantum key distribution over multicore fiber. Optics Express, 24(8), 8081. doi:10.1364/oe.24.008081 Cañas, G., Vera, N., Cariñe, J., González, P., Cardenas, J., Connolly, P. W. R., … Lima, G. (2017). High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers. Physical Review A, 96(2). doi:10.1103/physreva.96.022317 Lo, H.-K., Ma, X., & Chen, K. (2005). Decoy State Quantum Key Distribution. Physical Review Letters, 94(23). doi:10.1103/physrevlett.94.230504 Capmany, J. (2009). Photon nonlinear mixing in subcarrier multiplexed quantum key distribution systems. Optics Express, 17(8), 6457. doi:10.1364/oe.17.006457 Koshiba, M., Saitoh, K., Takenaga, K., & Matsuo, S. (2012). Analytical Expression of Average Power-Coupling Coefficients for Estimating Intercore Crosstalk in Multicore Fibers. IEEE Photonics Journal, 4(5), 1987-1995. doi:10.1109/jphot.2012.2221085 Tu, J., Saitoh, K., Koshiba, M., Takenaga, K., & Matsuo, S. (2012). Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber. Optics Express, 20(14), 15157. doi:10.1364/oe.20.015157 Hayashi, T., Taru, T., Shimakawa, O., Sasaki, T., & Sasaoka, E. (2011). Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber. Optics Express, 19(17), 16576. doi:10.1364/oe.19.016576 Choi, I., Young, R. J., & Townsend, P. D. (2010). Quantum key distribution on a 10Gb/s WDM-PON. Optics Express, 18(9), 9600. doi:10.1364/oe.18.009600 Mora, J., Amaya, W., Ruiz-Alba, A., Martinez, A., Calvo, D., Muñoz, V. G., & Capmany, J. (2012). Simultaneous transmission of 20x2 WDM/SCM-QKD and 4 bidirectional classical channels over a PON. Optics Express, 20(15), 16358. doi:10.1364/oe.20.016358 Mora, J., Ruiz-Alba, A., Amaya, W., Martínez, A., García-Muñoz, V., Calvo, D., & Capmany, J. (2012). Experimental demonstration of subcarrier multiplexed quantum key distribution system. Optics Letters, 37(11), 2031. doi:10.1364/ol.37.002031 Gleim, A. V., Egorov, V. I., Nazarov, Y. V., Smirnov, S. V., Chistyakov, V. V., Bannik, O. I., … Buller, G. S. (2016). Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference. Optics Express, 24(3), 2619. doi:10.1364/oe.24.002619 Yoshino, K., Ochi, T., Fujiwara, M., Sasaki, M., & Tajima, A. (2013). Maintenance-free operation of WDM quantum key distribution system through a field fiber over 30 days. Optics Express, 21(25), 31395. doi:10.1364/oe.21.031395

...loading
Report a bug

Under construction

We're in Beta!

The GoTriple platform is still in Beta and we keep adding new features everyday. Check the project's website to see what's new and subscribe to our Mailing List.