test
Search publications, data, projects and authors
Characterizing water security with a watershed approach: Case study Veracruz, Mexico

Articles

<http://hdl.handle.net/10251/170615>
KeywordsTriple Keywords
Communication
Mass communication
Communication, Primitive
Standard of value
Value
Worth
Values
Axiology
Maps
Plans
Correspondence
Letters
Risk
Use of land
Utilization of land
Land use
Land
Land utilization
Concepts
Concept formation
Schooling
Instruction
Education of children
Human resource development
Children--Education
Students--Education
Youth--Education
Education
Pedagogy
Education, Primitive
Number concept
Periodicals
Journals (Periodicals)
Magazines
Provincial-federal relations
Federalism
Federal systems
Division of powers
Powers, Division of
Federal government--Law and legislation
Federal government
Federal-state relations
State-federal relations
Federal-provincial relations
Industries
Industrial production
Industry

Abstract

[EN] Mexico does not have an instrument to measure water security (WS) and 47 % of its states have extremely high water stress. This research characterized and evaluated a WS index in Veracruz, with a hydrological basin approach, using geographic information systems to analyze variables, indicators and dimensions in Mexico. The results indicated that 11 watersheds (19 %) had a High WS, 21 (36 %) Medium WS, 20 (35 %) Low WS and 6 (10 %) Very Low WS; no watershed reached Very High WS. 77 % of the basins presented a decrease of water from 2014-2020 and the indicator with the lowest value was “infrastructure”. Consequently, measuring the current water availability must be modified by a water balance and making a strategic planning infrastructure. For other regions, replication of the proposed WS index is considered feasible. Beck, M.B., Villarroel, R. 2013. On water security, sustainability, and the water-food-energy-climate nexus. Frontiers of Environmental Science and Engineering, 7(5), 626-639. https://doi.org/10.1007/s11783-013-0548-6 Cervantes-Jiménez, M., Díaz-Delgado, C., González-Sosa, E., Gómez-Albores, M.A., Mastachi-Loza, C.A. 2020. Proposal of a water management sustainability index for the 969 sub-basins of Mexico. Journal of Maps, 16(2), 432-444. https://doi.org/10.1080/17445647.2020.1763486 Chen, J., Yang, S., Li, H., Zhang, B., Lv, J. 2013. Research on geographical environment unit division based on the method of natural breaks (Jenks). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 3, 47-50. https://doi.org/10.5194/isprsarchives-XL-4-W3-47-2013 CONABIO. 2020. Monitoring Activity Data for the Mexican REDD+ program (MAD-Mex). Cobertura de Suelo Sentinel 2, 2018. https://monitoreo.conabio.gob.mx/snmb_charts/descarga_datos_madmex.html Damania, R., Desbureaux, S., Rodella, A.S., Russ, J., Zaveri, E. 2019. Quality unknown: The invisible water crisis. The World Bank. https://doi.org/10.1596/978-1-4648-1459-4 De Smith, M.J., Goodchild, M.F., Longley, P. 2018. Geospatial analysis: a comprehensive guide to principles, techniques and software tools. Troubador publishing ltd. FAO. 2013. Forests and water. International momentum and action. United Nations. Gain, A., Giupponi, C., Wada, Y. 2016. Measuring global water security towards sustainable development goals. Environmental Research Letters, 11(124015). https://doi.org/10.1088/1748-9326/11/12/124015 Global Forest Watch. 2020a. Global Forest Watch. México. https://www.globalforestwatch.org/dashboards/country/MEX/?category=forest-change&dashboardPrompts=eyJzaG93UHJvbXB0cyI6dHJ1ZSwicHJ Global Forest Watch. 2020b. Pérdida de cobertura arbórea en Veracruz, Mexico. https://www.globalforestwatch.org/dashboards/country/MEX/30?category=summary&dashboardPrompts=eyJvcGVuIjpmYWxzZSwic3RlcEluZGV4IjowLCJzdGVwc0tleSI6ImRvd25sb2FkRGFzaGJvYXJkU3RhdHMiLCJmb3JjZSI6dHJ1ZX0%3D&firesAlerts=eyJpbnRlcmFjdGlvbiI6e319&gladAlerts=eyJpbn Grey, D., Sadoff, C.W. 2007. Sink or swim? Water security for growth and development. Water policy, 9(6), 545-571. https://doi.org/10.2166/wp.2007.021 GWP. 2016. GWP in action 2015 annual report. Hansen, M.C., Potapov, P.V, Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V, Goetz, S.J., Loveland, T.R. 2013. High-resolution global maps of 21st-century forest cover change v1.7. Science, 342, 850-853. https://doi.org/10.1126/science.1244693 Hofste, R.W., Kuzma, S., Walker, S., Sutanudjaja, E.H., Bierkens, M.F.P., Kuijper, M.J.M., Faneca-Sánchez, M., Van Beek, R., Wada, Y. 2019. Aqueduct 3.0: Updated Decision Relevant Global Water Risk Indicators." Technical Note. World Resources Institute. https://doi.org/10.46830/writn.18.00146 Howard, G., Bartram, J., Williams, A., Overbo, A., Geere, J.A., Organization, W.H. 2020. Domestic water quantity, service level and health. World Health Organization. IPCC. 2018. Global Warming of 1.5 °C. OMM,PNUMA. IPCC. 2019. Climate Change and Land. https://www.ipcc.ch/report/srccl/ Kaimowitz, D. 2008. The prospects for reduced emissions from deforestation and degradation (REDD) in Mesoamerica. International Forestry Review, 10(3), 485-495. https://doi.org/10.1505/ifor.10.3.485 Knapp, K.R., Diamond, H.J., Kossin, J.P., Kruk, M.C., Schreck, C.J.I. 2018. International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 4. NA. National Centers for Environmental (NOAA). Makarieva, A.M., Gorshkov, V.G., Sheil, D., Nobre, A.D., Li, B.L. 2013. Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics. Atmospheric chemistry and Physics, 13(2), 1039-1056. https://doi.org/10.5194/acp-13-1039-2013 National Integrated Drought Information System. 2020. Monitor de Sequía de América del Norte. Intensidad de la sequía. https://www.drought.gov/nadm/content/north-american-drought-monitor Potapov, P., Xinyuan, L., Hernandez-Serna, A., Tyukavina, A., Hansen, M.C., Kommareddy, A., Pickens, A., Turubanova, S., Tang, H., Edibaldo-Silva, C., Armston, J., Dubayah, R., Blair, B.J., Hofton, M. 2020. Mapping and monitoring global forest canopy height through integration of GEDI and Landsat data. Zenodo, In review, 27. https://doi.org/10.5281/zenodo.4008406 Reig, P., Maddocks, A., Gassert, F. 2013. World's 36 most water-stressed countries. World Resources Institute. https://www.wri.org/insights/worlds-36-most-water-stressed-countries. Shah, T. 2016. Increasing water security: the key to implementing sustainable development goals. En TEC Background Papers (Número 22, pp. 1-56). Global Water Partnership. Townshend, J. 2016. Global Forest Cover Change (GFCC) Tree Cover Multi-Year Global 30 m V003. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MEaSUREs/GFCC/GFCC30TC.003 UN Water. 2013. Water Security and the Global Water Agenda. The UN-Water analytical brief. United Nations. UN Water. 2017. Integrated Monitoring Guide for Sustainable Development Goal 6 on Water and Sanitation.Targets and global van Beek, E., Arriens, W.L. 2014. Water security: Putting the concept into practice. TEC Background Papers, 20, 1-55. van Ginkel, K.C.H., Hoekstra, A.Y., Buurman, J., Hogeboom, R.J. 2018. Urban Water Security Dashboard: systems approach to characterizing the water security of cities. Journal of water resources planning and management, 144(12), 4018075. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000997 Zeitoun, M. 2011. The global web of national water security. Global Policy, 2(3), 286-296. https://doi.org/10.1111/j.1758-5899.2011.00097.x

...loading
Report a bug

Under construction

We're in Beta!

The GoTriple platform is still in Beta and we keep adding new features everyday. Check the project's website to see what's new and subscribe to our Mailing List.