test
Search publications, data, projects and authors

Thesis

English

ID: <

http://hdl.handle.net/20.500.11794/29953

>

Where these data come from
Protection of carbon anode against air burning : a new approach to apply and understand the inhibiting effect of boron impregnation

Abstract

Aluminum electrolysis is a process that consumes energy and resources (raw materials, qualified personnel, time, etc.). Several research projects are underway around the world to improve the efficiency of the aluminum manufacturing process, to reduce toxic gas emissions (CO2, CO, CF4, C2F6 ...) and to reduce production costs. One of the current problems of alumina electrolysis is the excessive consumption of carbon anodes. Indeed, these anodes, when they are heated at high temperatures, are attacked by ambient air between 400 and 600 °C, and by the CO2 at 960 °C which results in an over-consumption of carbon, thereby reducing the manufacturing capacity of metallic aluminum per kg of carbon consumed. Currently, the average lifetime of an anode is between 20 and 30 days. The objective of this project is to reduce the reaction rate of anode oxidation under ambient air. Different methods have been developed to obtain an effective and economical protection which would reduce the over-consumption of the carbon anode against the phenomenon of air oxidation. Since boron oxide is known as an inhibitor of carbon/oxygen reaction, several attempts have been made to make a coating on the anode, confirming the inhibitory effect of boron oxide on this reaction, thus allowing protection of the carbon anodes. The influence of each of the parameters (temperature, concentration, duration of impregnation in the solution, etc.) were studied, as well. X-ray tomography showed that the anode is mainly attacked on the surface and that the boron oxide coating creates a physical barrier preventing access of oxygen to the anode. Further studies have been carried out to understand the inhibitor mechanism of boron oxide on carbon-oxygen reaction. According to the literature, boron oxide and boric acid can act in two ways: either by fixing on the anode surface resulting in blocking the active carbon sites or by creating a vitreous layer which serves as a physical barrier to oxygen. A kinetic study has been established which confirms that the number of interactions between oxygen and carbon sites decreases in the presence of boron. ToF-SIMS has revealed that boron is present as an oxide on the anode surface and also in the form of carbon-boron bond (BC-). Therefore, this acts like a chemical protection while boron atoms block the carbon active sites, preventing oxidation. The consumption of the carbon anode in the electrolysis cells is controlled by the impurities and the graphitization level as well as the mass transport through its porous structure. The impregnation of coke particle could have an effect on the porosity and its distribution. Coke particles (from 4000 μm to 4 760 μm in diameter) was impregnated with boron oxide in order to reveal its effect on the porosity. The specific surface area and the volumes of 3 conversion rates of particles (at 0, 15 and 35%) were determined by argon adsorption and mercury infiltration in order to evaluate the contributions of subcritical gasification on the total gasification of the anodes under air at 525 °C. To determine the critical pore size (TC) for the treated and untreated coke, the measurement of internal and external contributions of pores was used. It was revealed that the pore sizes of 0.1-10 μm and larger were the most active pores for the gasification under air. In addition, the volume of only very small pores (0.0004-0.001 μm) was slightly decreased by boron impregnation. However, the contribution of the size range of these small pores to anode gasification is negligible. In this thesis, a new method for the protection of anodes by boron oxide has been developed. This involves treating the raw materials before anode is formed by using a low concentration of boron oxide (in ppm) in order to limit the level of impurities contained in the produced metal. The results performed with standard equipment showed that the air reactivity of the anode decreased by 15%, the dusting by 90% and CO2/CO loss by 30%. The electrical resistivity of the anode was not affected by boron oxide at this low level. The influence of each of the parameters (temperature, concentration, etc.) on anode protection was optimized, as well.

Your Feedback

Please give us your feedback and help us make GoTriple better.
Fill in our satisfaction questionnaire and tell us what you like about GoTriple!