test
Search publications, data, projects and authors

Thesis

French

ID: <

http://hdl.handle.net/20.500.11794/67756

>

Where these data come from
Current and future impacts of climate change on benthic communities in the Canadian Arctic

Abstract

The Arctic Ocean is emerging as one of the regions that is most affected by climate change. A significant increase in precipitation and sea surface water temperatures are expected and will undeniably lead to a significant loss of sea ice cover. Because of their effects on physicochemical parameters, these changes are expected to directly impact the surface primary producers (sea ice algae and phytoplankton), thereby limiting organic matter input towards the seafloor. It is thus commonly accepted that climate change will affect the distribution, diversity and abundance of benthic communities, due to its impact on environmental parameters (pelagic-benthic coupling and physicochemical parameters), and on ecosystem services and functions (e.g., benthic remineralization). As a consequence, the decrease in sea ice cover, the desalination of the surface layer or the increase in shipping traffic in the Hudson Bay Complex and in the eastern Canadian Arctic will likely lead to major changes in benthic community structure and biogenic structural habitats. In this context and since the impacts of climate change on benthic arctic ecosystems were still poorly understood, the objectives of this thesis were to i) describe the diversity and distribution of epibenthic communities in the Hudson Bay Complex and ii) understand the effects of climate change on biodiversity and benthic ecosystem functioning. The outcomes of this thesis allowed us to i) provide the most recent survey on epibenthic organisms in the Hudson Bay Complex and their relationships with environmental variables; ii) identify diversity hotspots sensitive to climate change; and iii) document and compare benthic biodiversity and fluxes within biogenic structures and adjacent bare sediments in the Canadian Arctic. A total of 380 taxa have been identified from 46 stations sampled across the Hudson Bay Complex. Despite the relatively low spatial coverage of our sampling, we estimated that our survey represented 71% of the taxa present in the Hudson Bay Complex. We showed that biomass, abundance, diversity and spatial distribution of epibenthic communities were strongly influenced by substrate, salinity, food supply and sea ice cover. We also showed that freshwater inputs were responsible for the lowest biomass, abundance and diversity observed along the coasts. In contrast, data collected from polynyas, further offshore, showed strong pelagic-benthic coupling resulting in high productivity in terms of biomass, abundance and diversity. Moreover, hierarchical modelling of species communities highlighted the influence of sea ice and indirectly of sea ice algae on the epibenthic communities occupying the central Hudson Bay. Projections of the structure of epibenthic communities under a RCP4.5 climate scenario revealed that the central Hudson Bay emerges as the most vulnerable area to climate change with a future diversity loss related to the decrease of sea ice. On the contrary, it would appear that coastal areas will serve as refuges and increase the diversity. In addition, our study showed that the presence of biogenic structures in deep habitats improved the trapping of organic matter, leading to a higher density of infauna in these environments compared to bare sediments. Their presence has also been found to enhance sediment nutrient release in the form of nitrates and ammonium. However, our study could not demonstrate these effects in a shallower sponge habitat. By providing new knowledge on the current and future distribution of epibenthic communities in the Hudson Bay Complex and the benthic ecosystem functioning in habitats with biogenic structures, results obtained during this thesis will contribute to the designation of Ecologically and Biologically Significant Areas, as well as to the establishment of Marine Protected Areas and conservation strategies in the Arctic Ocean.

Your Feedback

Please give us your feedback and help us make GoTriple better.
Fill in our satisfaction questionnaire and tell us what you like about GoTriple!