test
Search publications, data, projects and authors

Article

English

ID: <

stSLoqS59oq_01A06PA8i

>

Where these data come from
Rheology of granular materials composed of nonconvex particles

Abstract

By means of contact dynamics simulations, we investigate the shear strength and internal structure of granular materials composed of two-dimensional nonconvex aggregates. We find that the packing fraction first grows as the nonconvexity is increased but declines at higher nonconvexity. This unmonotonic dependence reflects the competing effects of pore size reduction between convex borders of aggregates and gain in porosity at the nonconvex borders that are captured in a simple model fitting nicely the simulation data both in the isotropic and sheared packings. On the other hand, the internal angle of friction increases linearly with nonconvexity and saturates to a value independent of nonconvexity. We show that fabric anisotropy, force anisotropy, and friction mobilization, all enhanced by multiple contacts between aggregates, govern the observed increase of shear strength and its saturation with increasing nonconvexity. The main effect of interlocking is to dislocate frictional dissipation from the locked double and triple contacts between aggregates to the simple contacts between clusters of aggregates. This self-organization of particle motions allows the packing to keep a constant shear strength at high nonconvexity.

Your Feedback

Please give us your feedback and help us make GoTriple better.
Fill in our satisfaction questionnaire and tell us what you like about GoTriple!