Search publications, data, projects and authors


The discovery of the fractional quantum Hall effect created a revolution in solid state research by introducing a new state of matter resulting from strong electron interactions. The new state is characterized by excitations (quasi-particles) that carry fractional charge, which are expected to obey fractional statistics. While odd denominator fractional states are expected to have an abelian statistics, the newly discovered 5/2 even denominator fractional state is expected to have a non-abelian statistics. Moreover, a large number of emerging proposals predict that the latter state can be employed for topological quantum computing ( Station Q was founded by Microsoft Corp. in order to pursue this goal). This proposal aims at studying the abelian and non-abelian fractional charges, and in particular to observe their peculiar statistics. While charges are preferably determined by measuring quantum shot noise, their statistics must be determined via interference experiments, where one particle goes around another. The experiments are very demanding since the even denominator fractions turn to be very fragile and thus can be observed only in the purest possible two dimensional electron gas and at the lowest temperatures. While until very recently such high quality samples were available only by a single grower (in the USA), we have the capability now to grow extremely pure samples with profound even denominator states. As will be detailed in the proposal, we have all the necessary tools to study charge and statistics of these fascinating excitations, due to our experience in crystal growth, shot noise and interferometry measurements.

Your Feedback

Please give us your feedback and help us make GoTriple better.
Fill in our satisfaction questionnaire and tell us what you like about GoTriple!