Conference
English
ID: <
ftecolecentrlyon:oai:HAL:hal-00842754v1>
·
DOI: <
10.1063/1.4812073>
Abstract
International audience ; Particle shape is a major parameter for the space-filling and strength properties of granular materials. For a systematic investigation of shape effect, a numerical benchmark test was set up within a collaborative group using different numerical methods and particles of various shape characteristics such as elongation, angularity and nonconvexity. Extensive 2D shear simulations were performed in this framework and the shear strength and packing fraction were compared for different shapes.We show that the results may be analyzed in terms of a low-order shape parameter h describing the degree of distortion from a perfectly circular shape. In particular, the shear strength is an increasing function of h with nearly the same trend for all shapes, the differences being of second order compared to h. We also observe a nontrivial behavior of packing fraction which, for all our simulated shapes, increases with h from the random close packing fraction for disks, reaches a peak considerably higher than that for disks, and subsequently declines as h is further increased. Finally, the analysis of contact forces for the same value of h leads to very similar statistics regardless of our specific particle shapes.